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Using Nuprl for the verification and synthesis
of hardware

By MiriaM LEESER

School of Electrical Engineering. Cornell University, 335 Engineering
and Theory Center, Ithaca, New York 14853, U.S.A.

The Nuprl proof development system, based on constructive type theory, has a
sophisticated proof editor and user interface which facilitates the development of
proofs and specifications. We present our experience using Nuprl for hardware
verification and synthesis. We have verified floating point hardware and are
extending this work to reasoning about the IEEE floating point specification. In
addition we are using Nuprl to reason about software for synthesizing hardware
designs at several different levels. We present two efforts in this area. In the first, we
prove a system that synthesizes CMOS circuits from boolean equations. The second
system, PBS, minimizes large sets of boolean formulae by using the weak division
algorithm.
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Using theorem provers to verify hardware has several advantages over ad hoc
methods. These include an increased confidence in the correctness of the resulting
designs, data-independent analysis and more precise specification of behaviour.
Among the significant achievements in this area are the proofs of two micro-
processors: the Viper chip with the HOL system (Cohn 1988; Gordon 1985a), and
the FM8501 design with the Boyer—Moore system (Boyer & Moore 1988 ; Hunt 1986).
Despite such successes, the application of theorem proving to hardware verification
has been growing slowly. There are several reasons for this: existing tools are difficult
to use, specification techniques may be unnatural, practitioners require an expertise
in both hardware and mathematical logic, and the process of proving hardware after
it has been designed can be very tedious.

In this paper I discuss research into using Nuprl for formally verifying hardware
and hardware synthesis algorithms. Nuprl has a sophisticated proof editor and user
interface which facilitates the development of proofs and specifications. Display
forms allow the user to define symbols so that proofs appear on screen exactly as they
would on paper. Constructive type theory, and in particular, dependent types, allows
for a natural specification style. To alleviate the tedium of formal verification, we are
concentrating our efforts on providing tools which will allow hardware designers to
move verification techniques into the design process. For example, we are developing
a toolkit with pre-proven floating point hardware components and a formalized
definition of the IEEE floating point specification to minimize the amount of proof
required for each floating point design. In addition, we are concentrating on verifying
hardware synthesis algorithms which are then used repeatedly. The user of such
synthesis procedures gets the advantages of formal methods without requiring any
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50 M. Leeser

special training. The proof is done once, no matter how many times the synthesis tool
is used to generate designs. Nuprl is a very powerful system which is well suited to
these tasks.

Nuprl (Constable et al. 1986) is a tactic-oriented theorem prover developed at
Cornell University. It is a descendent of the LCF project at Edinburgh (Gordon et al.
1979) and the PLCV system (Constable & O’Donnell 1978). Nuprl is based on a
sequent version of Martin-Lof’s constructive type theory (Martin-Lof 1982), a rich
and expressive type theory. Nuprl has a user interface built on top of X windows
which allows the user to walk over and manipulate the proof tree. Nuprl was
developed for automated reasoning in many domains and has integers as a built-in
type, as well as decision procedures to support arithmetic reasoning. Our experience
has shown that these features make Nuprl a good choice for hardware reasoning.

The research presented here is most similar to work done with the HOL theorem
prover (Gordon 1985a). HOL is a tactic-oriented theorem prover based on higher-
order logic that is also a descendent of LCF. HOL differs from Nuprl in several ways.
HOL’s logic is classical and is based on a much simpler set of types than Nuprl. HOL
was developed explicitly for hardware verification ; Nuprl was developed as a general
purpose reasoning system. While HOL allows the user access only to the main goal
or unproved leaves of a proof, Nuprl provides the user with tools for walking over,
examining and manipulating the entire proof tree. HOL has been used to specify and
verify several large hardware designs including the VIPER processor (Cohn 1988).

Hardware verification work has also been done with the Boyer—Moore theorem
prover (Boyer & Moore 1988). The Boyer-Moore approach differs from that taken in
Nuprl and HOL in several ways. The logic of the Boyer-Moore prover is first order
and quantifier free. This simpler logic is less expressive, and is principally suited for
proofs that can be formulated as induction steps. However, a simpler logic has its
advantages: in the Boyer-Moore system, a great deal of automation of proofs is
possible. The user interacts with the theorem prover by providing intermediate
lemmas and hints for the prover which will allow it to complete the proof
automatically. The Boyer—Moore system has been used for several hardware designs
including a microprocessor (Hunt 1986). Higher-order logic provides a more natural
way of specifying hardware since it allows for easier specification of timing behaviour
and abstraction between levels than the logic used in the Boyer—-Moore prover. This
improvement in specification comes at the cost of losing the ability to provide a high
degree of automation for proofs.

Others are investigating the use of Martin-Lo6f’s constructive type theory for
reasoning about hardware. Hanna et al. (1990b) are developing a system called
Veritas+. Suk (1991) is using Isabelle (Paulson & Nipkow 1990) to define such a
logic. Both these systems take a similar approach to that used in Nuprl. We have an
advantage in that Nuprl is much more developed than cither of these systems, with
large tactic libraries, well-developed decision procedures, and a sophisticated user
interface incorporating a proof editor and definition facility.

The rest of this paper is organized as follows. First I go into more depth about
the Nuprl system and why it is good for hardware applications. Next I present a
survey of research done using Nuprl for hardware. This is split into two sections. The
first describes research on verifying hardware. The second describes research on
verifying synthesis tools for hardware.

Phil. Trans. R. Soc. Lond. A (1992)
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2. Nuprl

Nuprl!’s logic is a descendent of Martin-Lof’s constructive type theory (Martin-Lof
1982). Nuprl supports a rich set of built-in types. Primitive types include integer,
atom, and void. Type constructors include list, union, function, product, quotient
and subset. Integer induction and list induction are built in.

Types are stratified in an unbounded hierarchy of universes. U, is the first universe
and contains all small types, including integers, lists, pairs, disjoint union, function
space, equality (e.g. a=Db in int), and first-order propositions. U; and all elements
of U; are in U;,,. This concept of universes allows the Nuprl user to quantify over
types in a very natural manner. Quantification over types is not supported by HOL.

Nuprl’s logic is higher order. The logic is based on a propositions-as-types
correspondence : a proposition is true if and only if the type associated with that
proposition is inhabited. In other words, a proposition P is a type whose elements are
proofs of P.

A proof in Nuprl may be thought of as a tree. Associated with each node of the tree
is a sequent and, if the node is not a leaf, a proof rule. A sequent is a number of
hypotheses and a goal, and can be written in the form:

Xt Hyy X0 Hyy ..., x,:¢ Hy>>P.

Here the H; are hypotheses and P is the conclusion; ‘> >’ is the Nuprl equivalent
of a turnstile (). A sequent is true if the conclusion follows from the hypotheses. In
constructive logic, this means that given members x; of the types H; we can construct
a member of the type P.

Nuprl’s proofs are developed in a top—down fashion. The root of the tree is the goal
to be proved. The user applies inference rules which refine the goal into subgoals by
which the truth of the goal may be established. The children of a node are uniquely
determined by the sequent and rule of that node. Below is the fragment of a proof
tree where the rule &§-Intro is applied. The rule refines the goal P&Q into two
subgoals, one for proving P, and the other for proving Q.

>>P & Q
BY Intro
|->>pP
[->>0Q.

Inference rules in Nuprl may either be primitive rules or tactics written in the ML
programming language. Nuprl tactics are similar to HOL tactics: given a sequent,
they apply primitive inference rules and other tactics to the proof tree. Nuprl has
several powerful tactics, such as Autotactic, which take care of many of the
details required in a mechanized proof. Autotactic is usually able to completely
prove subgoals involving type checking and simple kinds of integer arithmetic and
propositional reasoning. Nuprl has a large existing set of tactics which fall into
several classes (Howe 1988). Some encode Nuprl's basic logical inference rules.

Phil. Trans. R. Soc. Lond. A (1992)
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52 M. Leeser

Others, including a backchaining tactic for second-order matching, incorporate
heuristics. It is straightforward to combine existing tactics to create new tactics.
Nuprl also provides decision procedures; a typical example is arith which simplifies
many arithmetic equalities and inequalities.

(a) Rich set of types
Constructive type theory is a very expressive type theory which was originally
developed to formalize mathematics. Nuprl’s types, which include built-in integers,
lists, and pairs, are well suited for reasoning about hardware.
Reasoning about hardware frequently requires manipulating booleans and bit
vectors as well as arithmetic reasoning. We define booleans as a subset of the
integers:

{x: int | x=0 in int VvV x=1 in int}

The fact that integers are built-in, combined with arithmetic decision procedures,
allows for efficient arithmetic reasoning. Using Nuprl’s evaluation facility, we can
easily do case analysis over finite types such as booleans.

A great deal of expressive power in constructive type theory is due to dependent
types. Dependent types allow for natural and general specifications (Hanna et al.
1990a). Nuprl provides several dependent types as primitives, including dependent
function, dependent product, and subset types. Dependent product types are a
generalization of cartesian products where the type of the second element of the pair
is dependent on the value of the first element. If the pair <a, b> has dependent
product type x:A#B, then a is of type A and b is of type B[a/x], which is read as
‘B with a substituted for x’.

A dependent function type, written x:A~>B, is the type of functions from type
A to type B. Occurrences of the variable x which is considered to be of type A, are
bound in type B. For example, if £ is a dependent function with type x:A->B and
a is a term with type A, then £ (a) has type B[a/x]. If a has subset type {x:A|P}
where A is a type and P is a proposition possibly with a free variable x, then x has
type A and P[a/x] is a true proposition.

Hanna et al. (19906) illustrate the use of dependent types with a definition of the
mod funetion for division of non-negative integers. Without dependent types, mod
would have type N->N+->N in Nuprl, where N is the type of non-negative
integers, and N+ is the type of positive integers. However, since we know that the
result of mod is less than its second input, we may wish to encode this in the type.
We can express mod using the dependent function and subset types:

N->m: N4+->{n: N | n <m}.

We present a simple example for reasoning about busses which illustrates the use of
dependent types. This example shows how bounds can be cleanly represented by
making the bound a part of the type, as was done in the example above.

We define int_seg as a subrange of the integers. This type is defined as the
integers between min and max.int_seg is an example of a subset type.

int_seg(min,max) =Amin max. {i:int| min <i <max}.

Nuprl has a powerful definition facility which allows the user to define display forms;
such features of the user interface are described in more detail below. In this

Phil. Trans. R. Soc. Lond. A (1992)
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Nuprl: verification and synthesis of hardware 53

discussion about busses, we use the display form {min..max} to represent the
integer segment from min to max. This is the display form defined and used from
within Nuprl.

Using int_seg, we can define the type array which takes a type A in U; and an
integer segment and returns a type; array, an example of a dependent function
type, is defined by the lambda expression:

AA min max. {min..max} -> A
A bus is defined as an array of width w with type Bool:
bus (w) =Aw. array{0..w-1} of Bool

The advantage of this representation is that the width of the bus is part of the type.
Checking bus widths when doing manipulations now becomes part of type checking,
and allows for very natural statements about bus manipulation. For example, we
define an operator cut, which selects a subrange of bits from a bus. The function cut
is:

cut (w,min, max,bus_in, bus_out) =

A w min max bus_in bus_out.
¥j:{0..max-min}. bus_in(min+7j) =bus_out(j) in Bool

The type of cut provides information about the bus widths:

w:N -> min:{0..w-1} -> max:{min..w-1} -> bus(w) ->

bus (max-min+4+1) -> prop

We have proved a very straightforward theorem about cut. Namely, that the new
bus formed from the cut operation has the correct number and values of wires from
the original bus. The goal proved about the cut operator is

THM cut_thm

>>Vw:N.
Ymin:{0..w=1}.
Vmax{min..w-1}.
Vbus_in:bus (w) .
Vbus_out:bus (max-min+1) .
cut ((w) (min) (max) (bus_in) (bus_out)) =>
Vj:{0..max-min}. bus_in(min+7j) =bus_out(j) in Bool

Using dependent types allows information about a term to be encapsulated in the
type of the term. Without dependent types, such information, such as bounds
checking, would have to be expressed in separate predicates. In the bus example, all
the information about the width of the bus would require separate predicates, and
would make for a much lengthier theorem.

The types available in Nuprl are much richer than those available in most other
theorem provers used for hardware verification. In HOL, primitive types are Bool

and ind. num, arith and list are theories built on top of the primitive types. HOL
provides cartesian product and function type constructors. However, dependent

Phil. Trans. R. Soc. Lond. A (1992)
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EDIT DEF cut @ ultrastar

cut ((Ka:N>) (Kb: index(W)>) (Kc:{min..w>) (Kd:bus(W)>)(Ke:bus(i)>))==
term_of (cut_) (Ka>) (<b>) ({c>) ({d>) (Ke>)

EDIT THY cut_ @ ultrastar

H# top
>> wiN => min:{0..w-1> => max:{min..w=-1> =>
bus(w) -> bus((max-min)+1) => Ul

BY (Explicitl
'A W omin max bus_in bus_out.
¥j:{0..max-min}.
bus_in(min+j) = bus_out(j) in Bool'...)

EDIT rule of cut_ @ ultrastar
(Explicitl
' W min max bus_in bus_out.

[¥j:[{0. .max-min}].
[bus_in(mint+j) = bus_out(j) in [Boolllll'...)]

—11x 1. wn:

5 void

1
2
3
4
S
6
?
>
28 1. w:
2
3
4
5
6
?
8
>

N
.min: {0..w-1}
.omax: {min..w-12>
. bus_in: bus(w)
. bus_out: bus((max-min)+1)}
. jr {0, .max-min}
. mintj<@->void
. wellmint
> void

Figure 1. A Nuprl session.

types are difficult to express in a logic such as that used in HOL. In Nuprl, the user
can quantify over types; such quantification is unavailable in HOL. This richer type
theory does not come for free, however. In a simple type theory such as that used in
HOL, type checking is decidable. The price for dependent types is that, in general,
type checking is undecidable. In practice, type checking can usually be handled
automatically by tactics available in Nuprl.

(b) User interface

The user interface to Nuprl is built on top of the X window system. Interactions
with the system take place within an ordered collection of tactics, theorems and
definitions called a library. Objects are created and modified using special purpose
structure editors for text editing and proof editing. Figure 1 shows part of the screen
during a Nuprl session where the cut theorem is being developed.

Nuprl has a sophisticated definition facility for display forms which can greatly
increase the readability of complex expressions and hide detail. This definition
facility is essentially a macro facility which interacts with the text editor. In the
example above we defined the display form of an integer segment from min to max
to be {min. .max}. This display form is what appears in definitions, theorems and
proofs that make use of int_seg. Similarly the symbols A, 3, V are what appear on
the screen when formulae are manipulated. This definition facility allows a user to
make the proofs developed in Nuprl look much as they would if the user had done
the mathematics on paper.

Nuprl maintains a complete proof tree when proofs are developed. A special
purpose proof editor permits the user to browse the proof tree and run tactics at
arbitrary nodes. This is in contrast to HOL and most other tactic-oriented theorem

Phil. Trans. R. Soc. Lond. A (1992)
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provers which maintain just the main goal and the unproven subgoals of a proof.
Nuprl provides commands for walking up and down the proof tree, jumping to the
top of the tree and jumping to the next unproven node. In Nuprl the user may have
several proofs active at once. Transformation tactics are provided for transforming
one proof into another. These allow the user to copy pieces of a proof tree and graft
them back onto the same or different nodes. These tactics are useful when the user
wishes to try out a new tactic on a node without losing any previous work done on
the proof. They are also useful when the same tactics are applied to two different
branches of the proof tree. This frequently arises when doing case analysis. Such
manipulations of the proof tree are unavailable in any of the other theorem provers
used for hardware reasoning.

Nuprl tactics have also been developed for outputting WIEX versions of libraries
and proofs. All Nuprl examples in this paper were automatically generated using
these tactics.

3. Experience with Nuprl in verification

In this section we describe experience with verification of hardware designs in
Nuprl. Our approach to hardware verification is based on that developed by the HOL
group at Cambridge (Camillieri et al. 1986). Hardware components are modelled as
relations on their inputs and outputs, and are either considered primitive or are built
from other, simpler hardware components. The specified behaviour of primitive
components is assumed to be correct.

For more complex components, the user provides both a specification of intended
behaviour and an implementation. The implementation is described as the logical
conjunction of simpler components along with behaviours of those components.
Internal connections are existentially quantified. This style of specification is
hierarchical ; the specification of a component at one level of verification becomes
part of the implementation at the next higher level. In addition, the user can decide
what level of behaviour is primitive. Primitive components may be transistors in one
proof, gates in another, register transfer level components in another, etc.

To verify that a component is correct, the user must show that the implemerftation
correctly implements the specified behaviour. In most cases the verification condition
we use is that the implementation implies the specification. This allows the
specification to be more abstract than the implementation.

This approach is for verifying hardware after it has been designed. In the
remainder of this section we introduce the approach with Nuprl on some simple
examples, then describe our experience with some more complex combinational and
sequential examples.

As many researchers in the field have noted, such post hoc proof can be very tedious
and time consuming. In addition, it generally requires a practitioner with training in
both hardware design and formal methods ; such specialists are rate. Formal methods
will become more accepted if we can move them into the design process. This can be
accomplished by making specifications as abstract as possible, and by concentrating
on proof of components and specifications that can be reused. We are doing this
within the realm of floating point design. The final part of this section describes work
in progress on a floating point toolkit.

Phil. Trans. R. Soc. Lond. A (1992)
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(a) Using Nuprl for hardware verification

To specify a hardware component in Nuprl, the user must provide three things: a
display form definition, a typing lemma, and an extraction. The typing lemma gives
the type of the relation specifying the hardware component. The extraction provides
evidence that this type is inhabited. We use the convention that the extraction for
a primitive component is a lambda expression specifying its behaviour, and the
extraction for a more complex component is a lambda expression describing its
structure.

The Nuprl user works within a library. A hardware component is specified as two
library objects: a definition, which describes the display form, and a theorem, which
is comprised of the type and extraction. We use the convention that the definition
has the same name as the component, and the theorem has the name of the
component followed by ‘_’. The user can automatically create these library objects
by using the ML function create_hardware which takes the component’s name,
parameters and their types. The ML function creates the definition and sets up the
theorem with the correct goal. As a separate step, the user provides the extraction
to prove the typing theorem.

To illustrate these concepts we present a simple example, for which the
primitive component is an inverter. The user invokes the ML function
create_hardware with the name (inverter) and the parameters and their
types (<a:Bool> -> <y:Bool>). The ML function creates the definition
inverter and the typing theorem inverter_. The definition is

DEF inverter

inverter(<a:Bool>, <y:Bool>) ==
term_of (inverter_) (<a>) (<y>).

The expression on the left-hand side of the = = symbol is the display form. It is what
the user sees or instantiates when using this definition. For hardware components
this always has the same form: the name of the module followed by its parameters.
The expression on the right-hand side is what this term is defined as. For hardware
definitions, a component is defined as the extraction of the typing theorem the user
defines. In this definition, term_of refers to the extraction of the typing theorem
inverter_.

The ML function also sets up the typing theorem inverter_. For the inverter,
the type is a relation over booleans; the type of the relation is prop, the type for
propositions. The user must open the theorem inverter_ and provide its
extraction. The extraction is evidence that the type inverter_ is inhabited. Since
the inverter is considered primitive, the extraction is its specified behaviour. The
complete theorem for the inverter is

THM inverter_
>>Bool -> Bool -> prop
Extraction:
A ay. y=-(a) in Bool.

To specify a buffer built from two inverters, the user provides the name buf fer and
its parameters and their types. The user also specifies the extraction term for the

Phil. Trans. R. Soc. Lond. A (1992)
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>> Va,y:Bool. buffer((a)(y)) => y=a in Bool
BY (Unfolds [‘buffer’ ; ‘inverter‘] ...)
|
| 1. a:Bool
| 2. y:Bool
| 3. db:Bool. b = —(a) in Bool & y = —(b) in Bool
[->> y = a in Bool

BY (EThin 3...)

|
| 3. al:Bool
| 4. ai=—=(a) in Bool
| 5. y=-=(al) in Bool
[->> y = a in Bool
BY (SubstHypInHypAndThin 4 5 ...)
|
| 4. y=—(=(a)) in Bool
|->> y = a in Bool
BY (RWHyp rw.not_not_convn 4 ...)
Figure 2. Buffer proof.

buffer, which by convention is its structure. The resulting entries in the Nuprl library
are:
DEF buffer
buffer((<a:Bool>) (<b:Bool>))==
(term_of (buffer_) (<a>) (<b>))
THM buffer_
>> Bool -> Bool -> prop
Extraction:

A a y. db:Bool.inverter(a,b) & inverter(b,y).
The behaviour of the buffer is specified in a separate theorem:
THM buffer_thm
>>Va,y:Bool.buffer((a) (y)) => y=a in Bool.

The buffer is verified by proving that the implementation implies the specification.
The complete proof in Nuprl is shown in figure 2. The top line, beginning with > >,
shows the goal to be proved which has been entered by the user. The user also types
in all lines beginning with BY. The other lines of the proof are generated by Nuprl.

The lines beginning with BY are the rules applied to refine the proof. All the rules
in this proof are of the form (T...). This is the display form for running
Autotactic after the tactic T. Autotactic is usually able to completely prove
subgoals involving type checking and simple kinds of integer arithmetic and
propositional reasoning. A subgoal proved with Autotactic is not displayed.
Underneath each rule are the unproven subgoals generated by applying the rule.
Above each subgoal is its hypothesis list which is numbered and displayed vertically.

Phil. Trans. R. Soc. Lond. A (1992)
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Figure 3. marc block diagram.

Numbers in the rules refer to hypothesis numbers. In the interest of brevity, we do
not repeat hypotheses which are carried forward from earlier steps in the proof. In
general, several subgoals may be generated by each rule, and the proof has the form
of a tree. In this proof, only one unproven subgoal is generated at each step. A proof
is complete when a rule generates no unproven subgoals.

The proof of the buffer is completed in four steps. In the first step we unroll
definitions. In the second step we introduce a witness for the existentially quantified
variable (and thin or discard its hypothesis). In the third step we substitute for a
variable from one hypothesis to another. The final step involves applying a rewrite
rule to simplify the double negation of a Boolean. In general, rewrite rules are based
on previously proven lemmas.

(b) MAEC proof

The previous section illustrated the use of Nuprl for specifying and verifying
combinational hardware with a simple example. This same approach has been used
to verify much more complex hardware designs. The most complex design verified to
date is the MarC (Mantissa Adjuster and Exponent Calculator) (Basin & DelVecchio
1990). The MmaAEC is a section of a floating point adder used in a systolic array ¥rr
processor. This processor was developed for NASA as part of an image processing
system for ground-based telescopes.

The maEC inputs the mantissas and exponents for two floating point numbers and
adjusts the two mantissas so that the bits with equal weight are aligned in the two
mantissas. Each of the mantissas has 49 bits and each exponent nine bits. The MAEC
design contains over 5000 transistors. The circuit has 116 inputs and 107 outputs,
which makes exhaustive simulation impractical. The Nuprl proof of the circuit goes
down to the transistor level, using a simple switch level transistor model.

The block diagram for the magrc is shown in figure 3. The inputs are the two
mantissas, MAT and MBI, and their respective exponents, EA and EB. The outputs are
MAOD, a shifted and inverted copy of MAI, and MBO, a non-inverted, shifted copy of
MBI. EOb is the inverse of the larger of EA and EB.

The functions performed by the marc are:

(1) it inputs the exponents and mantissas for two floating point numbers;

(2) it right-shifts one of the two mantissas so that bits with equal weight are
aligned in the two mantissas;

(3) it outputs (a) the shifted mantissa, (b) the mantissa that was not shifted, (c) the
larger of the two exponents.

The description of this behaviour that was verified in Nupzl is shown in figure 4.
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THM maec_thm
>>V MAI,EA,MBI,EB,MAOb,MBO,EOb:vector.
maec (MAI,EA,MBI,EB,MAOb,MBO,EOb) =>
if vec_val(9,EA)>vec.val(9,EB)
then V 1:{0..8}. EOb(i)=—(EA(i)) in Bool &
V j:{0..48}. MAOb(j)=—(MAI(j)) in Bool &
V k:{0..48}. MBO(k) = (((k+vecval(9,EA)-vecval(9,EB))<49) =>
MBI (k+vec_val(9,EA)-vecval(9,EB))|0 ) in Bool

\
L\

’f\\w" else V 1:{0..8}. EOb(i)=—=(EB(i)) in Bool &

< V j:{0..48}. MBO(j)=MBI(j) in Bool &

>~ V k:{0..48}. MAOb(k) = (((k+vec_val(9,EB)-vecval(9,EA))<49) =>
2 = - (MAI (k+vec_val(9,EB)-vecval(9,EA))) |1 ) in Bool

- 5 Figure 4. MAEC theorem.

E 9) The function vec_val takes a length and a bit vector, and returns its integer value.

Its type is N->vector->1Int. vec_val is defined as a primitive recursive
function with the following behaviour:

vec_val(0,vec) = 0
vec_val(n+1,vec) = 2" bitval(vec(n)) + vec_val (n,vec),

bitval is a function which given a boolean returns its integer value. Since booleans
in Nuprl are defined in terms of integers, bitval is simply the identify function.

The magc description specifies its behaviour for two cases. The first is the case
where exponent EA is greater than or equal to EB, and the second where EB is greater
than EA. In the first case, output EOb is an inverted copy of EA, the output mantissa
MAOD is an inverted copy of the input mantissa MAI, and the output mantissa MBO
is a copy of the input mantissa MBI right shifted by vec_val(9,EA)-
vec_val (9, EB) positions. The behaviour of the second case is analogous. When
right-shifting is done, any bits shifted to the right of bit position zero are dropped.
The leftmost bits are filled with zeros for non-inverted vectors and ones for inverted
vectors.

This top level specification formed the basis of the verification of the magc, which
was performed down to the transistor level. The magc proof involves a great deal of
bit vector manipulation and arithmetic reasoning.
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(¢) Verification of sequential hardware

The marC proof demonstrates that Nuprl can be used for large hardware proofs
and for arithmetic reasoning about bit vectors and integers. However, the design is
purely combinational. We demonstrate our ability to reason about sequential
hardware by outlining the proof of a resettable, sequential counter. An outline of a
similar proof done in HOL is available (Gordon 1985b). This example illustrates
reasoning about circuits with sequential behaviour, vectors and feedback.

For the example we model time with a global clock. Our hardware modules are
relations over inputs and outputs which are described as either signals or n-bit wide
signals. Signals are functions from times to boolean values; n-bit wide signals (type
sig_n) are functions from time to n-bit wide vectors. The types for vector,
signal, and sig_n are given below. All are types in U1, the first universe in Nuprl’s
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out

\

Figure 5. Counter block diagram.

hierarchy of universes. Bool is the type of booleans, and N is the type of non-
negative integers:

vector: N -> Bool
signal: N -> Bool
sig_n: N -> vector.

The counter outputs a zero on the next clock tick if reset is true on the current
clock tick. Otherwise it outputs the previous output value plus one modulo 2+,
The specification of behaviour for the counter in Nuprl is:

THM counter_thm
>>VYn:N. Vreset:signal. VYout:sig_n.

counter ((n) (reset) (out)) =>
Vt:N.
if tr(reset(t))
then vec_val(n,out(t+1))=0
else vec_val(n,out(t+1)) = (vec_val(n,out(t))+1)
mod 2@+

The type and structure of the counter are described in a theorem named counter_.
THM counter_

>> N->signal->sig_n->Ul

Extraction:

A n reset out. Ja,b:sig_n.
initn_with_t((n) (reset) (a) (b)) &
deln ((b) (out)) &
inc ((n) (out) (a)) .

The block diagram of the counter implementation is shown in figure 5. The counter
is made up of three components, whose types and extractions are given in figure 6.
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THM initn with_t_
>> N->signal->sign->sig n->U1
Extraction:
A nreset ab. Vt:N.
if tr(reset(t))
then b(t) = zvec(n) in vector
else b(t)=a(t) in vector

THM deln_
>> sign->sig n->Ul
Extraction:
Aab. Vt:N. b(t+1) = a(t) in vector

THM inc_
>> N->sig.n->sign->U1
Extraction:
Anab. Vt:N.
vec_val(n,b(t))=(vecval(n,a(t))+1) mod 2(=+1)

Figure 6. Counter component specifications.

zvec is a function which given a non-negative integer n, returns a vector of length
n whose elements are all zero. For this example, we consider these components to be
primitive. We could prove that the behaviours provided are correctly implemented
at a lower level of detail. For example, we could verify that the behaviour specified
for the deln component is correctly implemented by a latch.

The proof of the counter begins by introducing the variables and unfolding the
definitions for counter and its components. Next, the proof is split up into two cases
one for reset being true at time ¢ and one for reset being false at time ¢. The case where
reset is true is handled with some straightforward rewriting and Autotactic. To
prove the other case, we use the following lemma about zvec:

>>Vn:N. vec_val (n,zvec(n)) =0.

(d) Toward a toolkit for generating verified floating point designs

We are aiming our verification efforts at the domain of floating point hardware.
This is an especially good domain for theorem proving based verification for several
reasons. The designs tend to be datapath oriented and therefore do not lend
themselves well to automated verification approaches such as model checking
(Clarke et al. 1989). Floating point hardware generally requires a large number of
inputs and outputs, so exhaustive simulation is impossible. Designers test their
floating point hardware by selecting test cases; however, this approach may miss
errors. The components used in floating point hardware tend to be drawn from a
small set including adders, multipliers, and shifters. This allows for reuse of proof
results which is important for speeding up the proof process. Finally, a large amount
of the reasoning required is arithmetic, a domain that theorem provers in general are
well suited for. Nuprl in particular, with its built in integers and induction schemes,
is a powerful theorem prover for arithmetic reasoning.
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We have begun formalizing and reasoning about the IEEE floating point
specification. Our work on the floating point specification is based on the
formalization of the specification in Z (Barrett 1989). This specification was used for
the verification of Inmos floating point hardware. This work was a significant success
in the application of formal methods to the design process. It differs from our effort
in that there was no mechanical support for reasoning about floating point numbers,
the translation to hardware was not automated, and the implementation was in
microcode. Other research on arithmetic hardware and floating point hardware has
been done at the bit manipulation level or the level of reasoning about integers (Pan
& Levitt 1990).

Our main contribution thus far has been lifting the reasoning about numerical
hardware into the domain of rational numbers. Work at Cornell has demonstrated
reasoning about fixed point rational numbers (Jackson 1991) with a case study that
illustrates specifying and verifying a floating point multiplier. This work uses
dependent types for representing rational numbers.

We are developing a floating point toolkit which will contain pre-proven
components such as n-bit wide shifters, multipliers and counters. It will also contain
a formally specified version of the IEEE floating point specification with theorems
proved about floating point representation and operations. A designer will use the
toolkit by connecting the components in the design required, selecting the portions
of the floating point specification the design meets, and verifying that the design does
in fact meet that specification. We will provide tactics that will be useful for
reasoning about floating point hardware. Our approach is intended to be flexible.
Users may design with hardware components not available in the library provided
that they prove such components. The price of this flexibility is that proofs are not
necessarily reused. Similarly, a user may write a specification based on a paradigm
other than that of the IEEE standard. The user will then have to formalize their
floating point specification, and will not be taking advantage of the specification
provided. We believe that many floating point designs will be able to reuse the proofs
and specifications provided.

4. Experience with Nuprl in synthesis

Much of the design process involves automated tools for generating designs or
pieces of them. Another way to bring verification into the design process is to verify
the implementations of these hardware synthesis tools. Others (Hanna et al. 1990b;
Suk 1991 ; Basin 1991) have discussed using the computational content inherent in
constructive proof to derive hardware designs. Nuprl has built-in tools, including an
evaluator, to extract and evaluate the computational content derived from a proof.
In hardware, this approach appears to work best for module generation, where the
designer specifies generic datapaths of arbitrary width. Tactics are used to unroll
these generic designs and instantiate the width and the components described. The
resulting design depends heavily on the way the design was originally specified and
the tactics developed for generating designs. This approach works well for datapaths,
but does not generalize to many synthesis tasks in hardware design.

We are investigating a more general approach to verified synthesis. In this section
we present two ways we have incorporated synthesis into formal verification. The
first is a system written in Nuprl for implementing boolean functions as networks of
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let BoolSimplifyl = Top (FirstC [AllE;SomeE;Iff;Imp]l);;

let NetRealize = LemmaToConv ‘net_realize‘ BoolRel;;

let BoolSimplify2 = Top (FirstC [NotAnd;NotOr;NotNot]);;

let NetExpand = Top (FirstC [PtranAnd;NtranOr;NtranAnd;PtranOr]);;

let NetSimplify = Top (FirstC [CondNtran;CondPtran;NotNot]);;

let Synthesize = BoolSimplifyl THENC NetRealize THENC BoolSimplify2
THENC NetExpand THENC NetSimplify;;

Figure 7. Transistor-level synthesis implementation.

transistors. The second consists of proving an implementation of a conventional
synthesis tool using Nuprl. This second approach is likely to have broader
applicability to the design task since use of the tool resembles use of a conventional
tool and does not require any special training in formal methods.

(a) Synthesizing CMOS circuits from boolean equations

We have implemented a system in Nuprl that automatically generates transistor-
level circuits from boolean expressions such as those output from a logic synthesis
system (Basin et al. 1991). The translation is driven by the syntax-directed
application of synthesis rules. Currently, with only six basic rules, our system
generates both series/parallel and pass transistor CMOS networks.

Within Nuprl we have developed a theory of combinational hardware, where the
synthesis rules are represented as statements about boolean logic or about the logical
equivalence of CMOS representations. The rules are formally proved and are used in
a rewrite package which simultaneously applies the transformations and constructs
a proof of correctness for each circuit it synthesizes, In addition to guaranteeing that
any circuit synthesized correctly implements its logical specification, we also
guarantee that the synthesis process always terminates. Our correctness claim is with
respect to a switch-level model of transistor behaviour that models boolean
behaviour and drive.

The synthesis system is written on top of a rewrite package implemented in Nuprl.
The application of the rules for synthesis is a rewrite component that is written in MLi
and presented in its entirety in figure 7.

Each of the first five lines of ML code in the figure corresponds to one of the five
steps of the algorithm. The final line in the program sequences the steps of the
algorithm. All of the steps except the second step sequence conversions. Conversions
are rewrite functions which are specified by the rules named in the list of arguments,
For example, in the step labelled BoolSimplify2, the rules applied correspond to
DeMorgan’s Laws and eliminating double negations. These rules are;

-(a A b) = —-a VvV -b
-(a V b) = -a A b
Ta = 4a.

The second step implements the boolean expression as a network of transistors using
an ML program which transforms a Nuprl lemma to a conversion.

This implementation is concise and understandable as well as extensible. New
boolean optimizations or transformation rules may be added to the system by
proving them correct and adding the corresponding transformation to the
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appropriate rewrite step. With the few rules included so far we have been able to
synthesize many optimized circuits including adders and barrel shifters.

(b) PBS: proven boolean simplification

PBS (Aagaard & Leeser 1991) is a proven implementation of the weak division
method for simplifying combinational hardware. Weak division is widely used in
logic synthesis packages; most notably in MIS (Brayton et al. 1987). Weak division
is a good candidate for formal verification because the mathematics is based on the
theories of boolean algebra. In addition, logic synthesis is commonly automated and
the resulting cAD tools are reused many times. We have used Nuprl to prove the
implementation of PBS used in the BEDROC synthesis system (Leeser et al. 1991).

Weak division minimizes the area used by combinational logic. It does this by
finding common subcircuits in a circuit and implementing the common logic once.
This technique results in a great reduction in the area required to implement a
design. In PBS, we have proven the implementation of weak division, not just the
algorithm. KEvery time PBS is run, the user has confidence that the output is
functionally equivalent to the input and that the output is irredundant. Thus,
though a large amount of effort was put in to developing the proof, the results of the
proof are used over and over again.

We proved two facts about the PBS implementation. The first is that the set of
equations input to PBS is functionally equivalent to the set of equations output by
PBS. The second is that the output is minimal in that the largest common divisor of
any two boolean functions is a single literal. This can be stated formally as: the size
of the support of the intersection of any two divisors of any two functions in the output
system s is at most one. We write this in Nuprl as:

minimality pbs(s:syst_t) =
V£fl,f2: fnct_t.
fl e s AN f2 € s =>
f1 # f2 =>
Vdl, d2: expr_t.
dl € § (f1) Ad2 € 6(f2) =>
[sup (d1nd2)|<1.

Users of logic synthesis tools usually check the functional equivalence of their input
and output systems by simulation, or with BDD-based algorithms (Bryant 1986).
Such checking needs to be done for every circuit generated; the proof of PBS was
done once, and guarantees functional equivalence for all sets of input and output
equations. Perhaps more interesting, however, is the minimality result.

Circuits are completely single stuck-at fault testable if and only if they are minimal
by the above criteria, which is also called irredundancy (Hachtel et al. 1989). In the
proof of PBS, it was verified that the outputs of PBS will always be irredundant. We
can therefore guarantee that all circuits output by PBS are completely single stuck-
at fault testable. It is much easier to verify properties of the implementation, such
as irredundancy, using theorem proving than on a case by case basis.

The implementation of PBS is in the Standard ML programming language (SML).
The proof consists of embedding a subset of the SML language in Nuprl and verifying
that the implementation of PBS done in that SML subset is correct. The
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mem(eq-fn, a, alist)=
let
fun f eqfn a hd result =
eq-fn(a) (hd) orelse result
in
reduce (f(eq-fn)(a)) false a_list
end
Figure 8. Definition of membership function.

mem_x._nil
VA : Ul.
Veqfn : A -> A -> Bool.
Va : A.
is_eq.rel(A) (eqfn) =>
= (tr(mem(eq_fn) (a) (nil)))

Figure 9. Theorem for membership in an empty list.

mem_x_ht
VA:UL.
Veq.fn:A->A->Bool.
Vt1l:A list.
Vhd,a:A.
is_eq.rel(A) (eq_fn) =>
tr(mem(eq.fn) (a) (hd::tl)) <=>
tr(eqfn(a,hd)) V
tr(mem(eqfn) (a) (t1))

Figure 10. Theorem for membership in a non-empty list.

implementation of weak division is made up of a hierarchy of smaller algorithms.
Each function of the SML implementation was copied into Nuprl and then theorems
describing the behaviour of the functions were proved. The overall proof proceeded
in a bottom-up fashion.

A simple function in the proof of PBS is the membership function for lists (mem),
whose definition is shown in figure 8. This function takes three parameters: an
equality function (eg_fn), a test element (a) and a list (a_list). The function
uses the higher-order function reduce to recurse over the list a_list and test if
there is an element of a_list which is equal (according to the equality function
eg_fn) to the test element a. The function reduce is used to handle most cases of
list recursion in PBS. The definition of reduce is

reduce f nil_val nil = nil_val

reduce f nil_val hd::tl = f hd (reduce nil_val £ tl).
There are two principal lemmas used to describe the function mem. The first one,
mem_x_nil, states that an empty list does not have any members (figure 9). The

second theorem, mem_x_ht (figure 10), states that an element is a member of a non-
empty list if and only if it is equal to the head of the list, or it is a member of the tail
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of the list. The proof of mem is typical of the proofs in PBS, and makes use of
unrolling of definitions, list induction, rewriting, and Autotactic.

5. Conclusions

In this paper we have illustrated the use of Nuprl for hardware verification and
synthesis. Nuprl is an extremely powerful theorem prover for these applications.
This is due to many factors including its rich type theory, arithmetic decision
procedures and user interface.

As tools for theorem proving based verification improve, and more libraries,
decision procedures and examples become available, theorem proving will be applied
more and more to guaranteeing the correctness of hardware. However, due to the
tedium required to use any theorem prover, and the level of sophistication required
of the user, these efforts will be applied only to subsets of hardware for which they
are particularly well suited. Areas that can make use of proof done in advance, or
reuse existing proofs will benefit greatly from this approach. Floating point hardware
is one such area with its well-defined specifications, arithmetic reasoning, and small
set of hardware components which are reused in many designs. The future of theorem
proving based hardware reasoning will be in such areas that can exploit reusable
proof.

This work owes a great debt to Mike Gordon and the research done in hardware verification at
Cambridge University. This paper describes work done at Cornell by many researchers. The marc
proof was done by Pete DelVecchio and Dave Basin. The floating point arithmetic reasoning is
currently being worked on by Paul Jackson. Dave Basin implemented the transistor level synthesis
system in Nuprl. The proof of PBS was done by Mark Aagaard. We would like to thank members
of the Nuprl group, especially Robert Constable, Doug Howe, and Chet Murthy for many useful
discussions. We also thank Albert Camilleri for useful discussions about the HOL system. Mark
Aagaard helped with use of the Nuprl system and developed many of the examples in this paper.
Thanks to Mark Aagaard, Robert Constable and Robert Cooper for their comments on earlier
drafts of this paper.
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Discussion

T. F. MeLaAM (University of Cambridge, U.K.). Professor Leeser has shown that
one advantage of dependent types is that they can be used to organize the content
of theorems, essentially by separating information about structure (for example, bus
widths) from information about function. Does she think that this can also be done
in a logic without dependent types — for example, simple type theory — by simply
adopting appropriate conventions for formulating and organizing theorems ?

M. LeEgesgR. I think Dr Melham’s question sums up quite nicely what we are doing. In
the example, I gave for using dependent types, we used the duality of the type system
and the proof logic to separate structural information from functional information.
This could be done in a logic without dependent types by carefully structuring
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68 M. Leeser

theorems. However, the specification style with dependent types is quite natural as
a result of this duality. Ease of specification is one of our goals, as well as ease of
exploiting the specification. Both are a result of using dependent types. With the bus
example, the proof obligations having to do with structure, such as bounds checking,
are proof obligations about types. They do not clutter up the proof of functionality.

W. A. Hu~t (Computational Logic, Inc., U.S.A.). Describe the proof that a
minimalized circuit can be completely single stuck-at fault tested (Hachtel et al.
1989).

M. LErsER. Briefly, the result states that a circuit which is guaranteed minimal, in
the sense that all common divisors contain at most one literal, is completely single
stuck-at fault testable. In our proof of PBS, we prove that the results of PBS will
always be minimal, therefore we use the result of Hachtel to claim that the circuits
will also be testable. This shows one way that formal verification and testing interact.
Such interactions should be investigated further.

Additional reference

Hachtel, G., Jacoby, R., Keutzer, K. & Morrison, C. 1989 On the relationship between area
optimization and multifault testability of multilevel logic. In International Conference on
Computer Aided Design, pp. 316-319. ACM/TEEE.

E. M. CLArRkE (Carnegie Mellon, U.S.A.). What benefit is to be gained from using a
constructive logic ?

M. Legser. All of the results discussed in this paper could equally have been arrived
at by using a classical logic with dependent types, such as that used in the Veritas+
system. Since classical logic is a subset of constructive logic, we do not lose anything
by using a constructive logic. As a practical matter, I have not found that using a
constructive logic has got in the way at all. So far, we have not taken advantage of
the fact that the logic is constructive. It is possible that such benefits could be gained
in the future. Basin at the University of Edinburgh and Suk at Chalmers University
in Sweden are investigating using the computational content inherent in constructive
proof to derive hardware designs. So far, this approach has been applied to a very
limited number of circuits. Taking advantage of the constructive content is an
interesting area for future research.
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